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Let 0<p<� and 0�:<;�2?. We prove that for trigonometric polynomials
sn of degree �n, we have
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where c is independent of :, ;, n, sn . The essential feature is the uniformity in : and
; of the estimate. The result may be viewed as an Lp form of Videnskii's
inequalities. � 2001 Academic Press

1. INTRODUCTION AND RESULTS

The classical Markov inequality for trigonometric polynomials

sn(%) := :
n

j=0

(cj cos j%+dj sin j%)

of degree �n is

&s$n&L�[0, 2?]�n &sn&L�[0, 2?] .

The same factor n occurs in the Lp analogue. See [1] or [3]. In the 1950s
V. S. Videnskii generalized the L� inequality to the case where the inter-
val over which the norm is taken is shorter than the period. An
accessible reference discussing this is the book of Borwein and Erdelyi
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[1, pp. 242�245]. We formulate this in the symmetric case: let 0<|<?.
Then there is the sharp inequality

|s$n(%)| _1&
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1�2

�n &sn&L�[&|, |] , % # [&|, |].

This implies that
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and for n�n0(|), this gives rise to the sharp Markov inequality

&s$n&L�[&|, |]�2n2 cot
|
2

&sn&L�[&|, |] .

What are the Lp analogues? This question arose originally in connection
with large sieve inequalities [7], on subarcs of the circle. Here we prove:

Theorem 1.1. Let 0<p<� and 0�:<;�2?. Then for trigonometric
sn of degree �n,
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Here C is independent of :, ;, n, sn .

This inequality confirms a conjecture of Erdelyi [4]. We deduce
Theorem 1.1 from an analogous inequality for algebraic polynomials:

Theorem 1.2. Let 0<p<� and 0�:<;�2?. Let

=n(z) :=
1
n _ |z&ei:| |z&ei; |+\;&:

n +
2

&
1�2

. (2)

Then for algebraic polynomials P of degree �n,

|
;

:
|(P$=n)(ei%)| p d%�C |

;

:
|P(ei%)| p d%. (3)

Here C is independent of :, ;, n, sn .
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Our method of proof uses Carleson measures much as in [8, 9], but also
uses ideas from [7] where large sieve inequalities were proved for subarcs
of the circle. We could also replace p th powers by more general expressions
involving convex increasing functions composed with p th powers, provided
a result of Carleson on Carleson measures admits a generalisation from Lp

spaces to certain Orlicz spaces. We believe that such an extension must be
possible, but have not been able to find it in the literature. So we restrict
ourselves to Lp estimates.

We shall prove Theorem 1.2 in Section 2, deferring some technical
estimates. In Section 3, we present estimates involving the function = and
also estimate the norms of certain Carleson measures. In Section 4, we
prove Theorem 1.1.

2. THE PROOF OF THEOREM 1.2.

Throughout, C, C0 , C1 , C2 , ... denote constants that are independent of
:, ;, n and polynomials P of degree �n or trigonometric polynomials sn

of degree �n. They may however depend on p. The same symbol does not
necessarily denote the same constant in different occurrences. We shall
prove Theorem 1.2 in several steps:

(I) Reduction to the Case 0<:<?; ; :=2?&:

After a rotation of the circle, we may assume that our arc [ei%: % #
[:, ;]] has the form

2=[ei%: % # [:$, 2?&:$]],

where 0�:$<?. Then 2 is symmetric about the real line, and this sim-
plifies use of a conformal map below. Moreover, then

;&:=2(?&:$).

Thus, dropping the prime, it suffices to consider 0<:<?, and ;&:
replaced everywhere by 2(?&:). Thus in the sequel, we assume that

2=[ei%: % # [:, 2?&:]]; (4)

R(z)=(z&ei:)(z&e&i:)=z2&2 cos
:
2

z+1; (5)
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and (dropping the subscript n from =n as well as an inconsequential factor
of 2 in =n in (2)),

=(z)=
1
n _ |R(z)|+\?&:

n +
2

&
1�2

. (6)

We can now begin the main part of the proof:

(II) Pointwise Estimates for P$(z) when p�1

By Cauchy's integral formula for derivatives,

|P$(z)|= } 1
2?i ||t&z|==(z)�100

P(t)
(t&z)2 dt }

�
1

2? |
?

&? }P \z+
=(z)
100

e i%+} d%<\=(z)
100+ .

Then Ho� lder's inequality gives

|P$(z)| =(z)�100 \ 1
2? |

?

&? }P \z+
=(z)
100

ei%+}
p

d%+
1�p

O ( |P$(z)| =(z)) p�100 p 1
2? |

?

&? }P \z+
=(z)
100

ei%+}
p

d%.

(III) Pointwise Estimates for P$(z) when p<1

We follow ideas in [9]. Suppose first that P has no zeros inside or on
the circle # :=[t: |t&z|= =(z)

100]. Then we can choose a single valued branch
of P p there, with the properties

d
dt

P(t) p
|t=z= pP(z) p P$(z)

P(z)

and

|P p(t)|=|P(t)| p.

Then by Cauchy's integral formula for derivatives,

p |P$(z)| |P(z)| p&1= } 1
2?i ||t&z|==(z)�100

P p(t)
(t&z)2 dt }

�
1

2? |
?

&? }P \z+
=(z)
100

e i%+}
p

d%<\=(z)
100+ .
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Since also (by Cauchy or by subharmonicity)

|P(z)| p�
1

2? |
?

&? }P \z+
=(z)
100

ei%+}
p

d%

and since 1& p>0, we deduce that

p |P$(z)| =(z)�100 \ 1
2? |

?

&? }P \z+
=(z)
100

ei%+}
p

d%+
1�p

O ( |P$(z)| =(z)) p�\100
p +

p 1
2? |

?

&? }P \z+
=(z)
100

ei%+}
p

d%.

Now suppose that P has zeros inside #. We may assume that it does not
have zeros on # (if necessary change =(z) a little and then use continuity).
Let B(z) be the Blaschke product formed from the zeros of P inside #. This
is the usual Blaschke product for the unit circle, but scaled to # so that
|B|=1 on #. Then the above argument applied to (P�B) gives

( |(P�B)$ (z)| =(z)) p�\100
p +

p 1
2? |

?

&? }P \z+
=(z)
100

ei%+}
p

d%.

Moreover, as above

|P�B(z)| p�
1

2? |
?

&? }P \z+
=(z)
100

ei%+}
p

d%,

while Cauchy's estimates give

|B$(z)|�
100
=(z)

.

Then these last three estimates give

|P$(z)| p =(z) p�(|(P�B)$ (z) B(z)|+|P�B(z)| |B$(z)| ) p =(z) p

�{\200
p +

p

+200 p= _ 1
2? |

?

&? }P \z+
=(z)
100

ei%+}
p

d%& .

In summary, the last two steps give for all p>0,

|P$=| p (z)�C0

1
2? |

?

&? }P \z+
=(z)
100

e i%+}
p

d%, (7)
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where

C0 :=200 p(1+ p&p).

(IV) Integrate the Pointwise Estimates

We obtain by integration of (7) that

|
2?&:

:
|(P$=)(ei%)| p d%�C0 | |P(z)| p d_, (8)

where the measure _ is defined by

| f d_ :=|
2?&:

: _ 1
2? |

?

&?
f \eis+

=(eis)
100

e i%+ d%& ds. (9)

We now wish to pass from the right-hand side of (9) to an estimate over
the whole unit circle. This passage would be permitted by a famous result
of Carleson, provided P is analytic off the unit circle, and provided it has
suitable behaviour at �. To take care of the fact that it does not have the
correct behaviour at �, we need a conformal map:

(V) The Conformal Map 9 of C"2 onto [w: |w|>1]

This is given by

9(z)=
1

2 cos :�2
[z+1+- R(z)],

where the branch of - R(z) is chosen so that it is analytic off 2 and
behaves like z(1+o(1)) as z � �. Note that - R(z) and hence 9(z) have
well defined boundary values (both non-tangential and tangential) as z
approaches 2 from inside or outside the unit circle, except at z=e\i:. We
denote the boundary values from inside by - R(z)+ and 9(z)+ and from
outside by - R(z)& and 9(z)& . We also set (unless otherwise specified)

9(z) :=9(z)+ , z # 2"[ei:, e&i:].

See [6] for a detailed discussion and derivation of this conformal map. Let

l :=least positive integer>
1
p

. (10)
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In [7, Lemma 3.2] it was shown that there is a constant C1 (independent
of :, ;, n) such that

a # 2 and |z&a|�
=(a)
100

O |9(z)|n+l�C1 .

(There l was replaced by 2, but the proof is the same; the constant C1

depends on l and so on p). Then we deduce from (8) that

|
2?&:

:
|(P$=)(ei%)| p d%�C p

1 C0 | } P
9 n+l }

p

d_. (11)

Since the form of Carleson's inequality that we use involves functions
analytic defined on the unit ball, we now split _ into its parts with support
inside and outside the unit circle: for measurable S, let

_+(S) :=_(S & [z: |z|<1]);
(12)

_&(S) :=_(S & [z: |z|>1]).

Moreover, we need to ``reflect _& through the unit circle'': let

_*(S) :=_& \1
S+ :=_& \{1

t
: t # S=+ . (13)

Then since the unit circle 1 has _(1 )=0, (11) becomes

|
2?&:

:
|(P$=)(ei%)| p d%

�C p
1 C0 \| } P

9n+l }
p

(t) d_+(t)+| } P
9 n+l }

p

\1
t+ d_*(t)+ . (14)

We next focus on handling the first integral in the last right-hand side:

(VI) Estimate the Integral Involving _+

We are now ready to apply Carleson's result. Recall that a positive Borel
measure + with support inside the unit ball is called a Carleson measure if
there exists A>0 such that for every 0<h<1 and every sector

S :=[rei%: r # [1&h, 1]; |%&%0 |�h]

we have

+(S)�Ah.
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The smallest such A is called the Carleson norm of + and denoted N(+).
See [5] for an introduction. One feature of such a measure is the inequality

| | f | p d+�C2N(+) |
2?

0
| f (ei%)| p d% (15)

valid for every function f in the Hardy p space on the unit ball. Here C2

depends only on p. See [5, pp. 238] and also [5, p. 31; p. 63].
Applying this to P�9n+l gives

| } P
9n+l }

p

d_+�C2N(_+) |
2?

0 } P
9n+l

(ei%)}
p

d%. (16)

(VII) Estimate the Integral Involving _*

Suppose that P has degree &�n. As 9(z)�z has a finite non-zero limit as
z � �, P(z)�9(z)& has a finite non-zero limit as z � �. Then
h(t) :=(P( 1

t )�9( 1
t )

n+l) has zeros in |t|<1 corresponding only to zeros of
P(z) in |z|>1 and a zero of multiplicity n+l&& at t=0, corresponding
to the zero of P(z)�9(z)n+l at z=�. Then we may apply Carleson's
inequality (15) to h. The consequence is that

| } P
9 n+l }

p

\1
t+ d_*(t)�C2N(_*) |

2?

0 } P
9 n+l

(e&i%)}
p

d%.

Combined with (14) and (16), this gives

|
2?&:

:
|(P$=)(ei%)| p d%

�C0C p
1 C2(N(_+)+N(_*)) |

2?

0 } P
9 n+l

(e i%)}
p

d%. (17)

(VIII) Pass from the Whole Unit Circle to 2 when p>1

Let 1 denote the whole unit circle, and let |dt| denote arclength on 1.
Suppose that we have an estimate of the form

|
1"2

| g(t)| p |dt|�C3 \|2
| g(t)+ | p |dt|+ | g(t)& | p |dt|+ , (18)

valid for all functions g analytic in C"2, with limit 0 at �, and interior and
exterior boundary values g+ and g& for which the right-hand side of (18)
is finite. Here, C3 depends only on p. (We shall establish such an inequality
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in the next step). We apply this to g :=P�9n+l. Then as 9\ have absolute
value 1 on 2, so that | g\ |=|P| on 2, we deduce that

|
1"2

|P(t)�9(t)n+l| p |dt|�C3 |
2

|P(t)| p |dt|

O |
2?

0 } P
9n+l

(ei%)}
p

d%�\|
2?&:

:
|P(ei%)| p d%+ (1+C3).

Now (17) becomes

|
2?&:

:
|(P$=)(e i%)| p d%

�C0C p
1 C2(1+C3)(N(_+)+N(_*)) |

2?&:

:
|P(ei%)| p d%. (19)

(IX) We Establish (18) for p>1

We note that inequalities like (18) are an essential ingredient of the pro-
cedure used in [8, 9] for proving weighted Markov�Bernstein inequalities,
though there the unit ball was replaced by a half-plane. In the case p=2,
they were also used in [7]. We can follow the same procedure. Firstly we
may use Cauchy's integral formula to deduce that

g(z)=
1

2?i |2

g&(t)& g+(t)
t&z

dt, z � 2.

Let / denote the characteristic function of 2 and for functions f # L1(2),
define the Hilbert transform on the unit circle,

H[ f ](z) :=
1
i?

PV |
1

f (t)
t&z

dt, a.e. z # 1.

Here PV denotes Cauchy principal value. Then we see that for z # 1"2,

g(z)= 1
2[H[/g&](z)&H[/g+](z)].

Now the Hilbert transform is a bounded operator on Lp(1 ), that is

|
1

|H[ f ](t)| p |dt|�C4 |
1

| f (t)| p |dt|,
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where C4 depends only on p [5]. We deduce that

|
1"2

| g(t)| p |dt|�C4 \|2
| g(t)+ | p |dt|+ | g(t)& | p |dt|+ ,

so we have (18).

(X) Pass from the Whole Unit Circle to 2 when p�1

We have to modify the previous procedure as the Hilbert transform is
not a bounded operator on Lp(1 ) when p�1. It is only here that we really
need the choice (10) of l. Let

q :=lp(>1).

Then we would like to apply (18) with p replaced by q and with

g :=(P�9n) p�q 9&1=(P�9n+l) p�q. (20)

The problem is that g does not in general possess the required properties.
To circumvent this, we proceed as follows: firstly, we may assume that P
has full degree n. For, if (3) holds when P has degree n, (and for every n)
it also holds when P has degree �n, since =n is decreasing in n.

So assume that P has degree n. Then P�9 n is analytic in C"2 and has
a finite non-zero limit at �, so is analytic at �. Now if all zeros of P lie
on 2, then we may define a single valued branch of g of (20) in C� "2. Then
(18) with q replacing p gives as before

|
1"2

| g(t)|q |dt|�C3 \|2
| g(t)+ |q |dt|+| g(t)& |q |dt|+

O |
1"2

|P�9n+l| p |dt|�2C3 |
2

|P(t)| p |dt|

and then we obtain an estimate similar to (19). When P has zeros in C"2,
we adopt a standard procedure to ``reflect'' these out of C"2. Write

P(z)=d `
n

j=1

(z&zj).

For each factor z&zj in P with zj � 2, we define

bj (z) :={
(z&zj)<\ 9(z)&9(zj)

1&9(zj) 9(z)+ ,

(1&|9(zj)|2)�9$(z j),

z{zj

z=zj
.
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This is analytic in C"2, does not have any zeros there, and moreover, since
as z � 2, |9(z)| � 1, we see that

|bj (z)|=|z&zj |, z # 2; |bj (z)|�|z&zj |, z # C"2.

(Recall that we extended 9 to 2 as an exterior boundary value). We may
now choose a branch of

g(z) :=_d \ `
zj � 2

bj (z)+\ `
zj # 2

(z&zj)+<9(z)n&
p�q

<9(z)

that is single valued and analytic in C"2, and has limit 0 at �. Then as
9\ have absolute value 1 on 2, so that | g\ |q=|P| p on 2, we deduce from
(18) that

|
1"2

|P(t)�9(t)n+l| p |dt|�|
1"2

| g(t)|q |dt|

�C3 |
2

( | g(t)+ | q+| g(t)& |q) |dt|

=2C3 |
2

|P(t)| p |dt|

and again we obtain an estimate similar to (19).

(XI) Completion of the proof
We shall show in Lemma 3.2 that

N(_+)+N(_*)�C4 . (21)

Then (19) becomes

|
2?&:

:
|(P$=n)(ei%)| p d%�C5 |

2?&:

:
|P(ei%)| p d%.

So we have (3) with a constant C5 that depends only on the numerical
constants Cj , 1� j�4 that arise from

(a) the bound on the conformal map 9;

(b) Carleson's inequality (15);

(c) the norm of the Hilbert transform as an operator on Lp(1) and
the choice of l;

(d) the upper bound on the Carleson norms of _+ and _*.
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3. TECHNICAL ESTIMATES

Throughout we assume (4) to (6). We begin with some estimates on the
function =:

Lemma 3.1. (a) For z, a # 2,

|=(z)&=(a)|�2 |z&a|. (22)

(b) Let 0<K< 1
2 . Then for a, z # 2 such that |z&a|�K=(a), we have

1&2K�
=(z)
=(a)

�1+2K. (23)

Proof. (a) Write z=ei%; a=eis. Now from (6),

|=(z)&=(a)|=
1
n } _ |R(z)|+\?&:

n +
2

&&_ |R(a)|+\?&:
n +

2

&
_ |R(z)|+\?&:

n +
2

&
1�2

+_ |R(a)|+\?&:
n +

2

&
1�2 }

�
|R(z)&R(a)|

2(?&:)
. (24)

Here

R(a)=&4a sin \s&:
2 + sin \s+:

2 +=&4a \cos2 :
2

&cos2 s
2+ ,

so as

1
?

(?&:)�cos
:
2

=sin
?&:

2
�

1
2

(?&:),

|R(a)|�4 cos2 :
2

�(?&:)2.

Note that then also

=(a)�
- 2

n
(?&:)�

5
n

cos
:
2

. (25)
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Next,

R(z)&R(a)=&4(z&a) \cos2 :
2

&cos2 %
2++4a \cos2 %

2
&cos2 s

2+ ,

so as % # [:, 2?&:],

|R(z)&R(a)|�4 |z&a| cos2 :
2

+4 } sin \s&%
2 + sin \s+%

2 +}.
Here

} sin \s&%
2 + sin \s+%

2 +}� } sin \s&%
2 +} _} sin

s
2

cos
%
2 }+ } cos

s
2

sin
%
2 }&

� } sin \s&%
2 +} _2 cos

:
2&

=|z&a| cos
:
2

.

We have used the fact that both s, % # [:, 2?&:]. So

|R(z)&R(a)|�8 |z&a| cos
:
2

.

Then (24) gives (22).

(b) This follows directly from (a). K

We next estimate the norms of the Carleson measures _+, _* defined by
(9) and (12�13). Recall that the Carleson norm N(+) of a measure + with
support in the unit ball is the least A such that

+(S)�Ah, (26)

for every 0<h<1 and for every sector

S :=[rei%: r # [1&h, 1]; |%&%0 |�h]. (27)

Lemma 3.2. (a)

N(_+)�c1 . (28)

(b)

N(_*)�c2 . (29)

13Lp MARKOV�BERNSTEIN INEQUALITIES



Proof. (a) We proceed much as in [7] or [8] or [9]. Let S be the
sector (27) and let # be a circle centre a, radius =(a)

100>0. A necessary condi-
tion for # to intersect S is that

|a&ei%0|�
=(a)
100

+h.

(Note that each point of S that is on the unit circle is at most h in distance
from ei%0.) Using Lemma 3.1(a), we continue this as

|a&ei%0|�
=(ei%0)
100

+
2

100
|a&ei%0|+h

O |a&ei%0|�
=(ei%0)

98
+2h=: * (30)

Next # & S consists of at most three arcs (draw a picture!) and as each such
arc is convex, it has length at most 4h. Therefore the total angular measure
of # & S is at most 12h�(=(a)�100). It also obviously does not exceed 2?.
Thus if /S denote the characteristic function of S,

|
?

&?
/S(a+=(a) e i%) d%�min {2?,

1200h
=(a) = .

Then from (9) and (12), we see that

_+(S)�_(S)

�|
[:, 2?&:] & [s: |eis&ei%0|�*] _

1
2? |

?

&?
/S \eis+

=(eis)
100

ei%+ d%& ds

�C1 |
[:, 2?&:] & [s: |eis&ei%0|�*]

min {1,
h

=(eis)= ds. (31)

We now consider two subcases:

(I) h�=(ei%0)�100

In this case,

*<
=(ei%0)

25
<1,
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recall (25) and (30). Then for s in the integral in (31),

|eis&ei%0|�*<1

O 2 } sin \s&%0

2 +}=|eis&ei%0|�*<
=(ei%0)

25

O |s&%0 |

and hence s, belongs to a set of linear measure at most �C2=(ei%0).
Also Lemma 3.1(b) gives

=(eis)� 23
25 =(ei%0).

So (31) becomes

_+(S)�_(S)�C2 =(ei%0)
h

=(ei%0)
=C2 h.

(II) h>=(ei%0)�100

In this case *<4h. If h< 1
4 , we obtain *<1 so as above, for s in the

integral in (31), |s&%0 |<? and hence

2 } sin \s&%0

2 +}=|eis&ei%0|�*<4h

O |s&%0 |

and hence s, belongs to a set of linear measure at most C2h.
Then (31) becomes

_+(S)�_(S)�C2h } 1=C2 h.

If h> 1
4 , it is easier to use

_+(S)�_(S)�_(C)�C12?�C18?h.

In summary, we have proved that

N(_+)=sup
S, h

_+(S)
h

�C3 ,

where C3 is independent of n, :, ;. (It is also independent of p.)

(b) Recall that if S is the sector (27), then

_*(S)=_&(1�S)�_(1�S),
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where

1�S={re i%: r # _1,
1

1&h&; |%+%0 |�h= .

For small h, say for h # [0, 1�2], so that

1
1&h

�1+2h,

we see that exact same argument as in (a) gives

_*(S)�_(1�S)�C4h.

When h�1�2, it is easier to use

_*(S)�h�2_*(C)�2_(C)�C5 . K

4. THE PROOF OF THEOREM 1.1.

We deduce Theorem 1.1 from Theorem 1.2 as follows: if sn is a tri-
gonometric polynomial of degree �n, we may write

sn(%)=e&in%P(ei%),

where P is an algebraic polynomial of degree �2n. Then

|s$n(%)| =2n(=i%)�n |P(ei%)| =2n(ei%)+|P$(ei%)| =2n(=i%).

Moreover,

|ei%&e i:| |ei%&ei;|=4 } sin \%&:
2 +} } sin \%&;

2 +} .
These last two relations and Theorem 1.2 easily imply (1). K
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